Dynamic Output Feedback Power-Level Control for the MHTGR Based On Iterative Damping Assignment
نویسنده
چکیده
Because of its strong inherent safety features and high outlet temperature, the modular high temperature gas-cooled nuclear reactor (MHTGR) is already seen as the central part of the next generation of nuclear plants. Such power plants are being considered for industrial applications with a wide range of power levels, and thus power-level control is an important technique for their efficient and stable operation. Stimulated by the high regulation performance provided by nonlinear controllers, a novel dynamic output-feedback nonlinear power-level regulator is developed in this paper based on the technique of iterative damping assignment (IDA). This control strategy can provide the L2 disturbance attenuation performance under modeling uncertainty or exterior disturbance, and can also guarantee the globally asymptotic closed-loop stability without uncertainty and disturbance. This newly built control strategy is then applied to the power-level regulation of the HTR-PM plant, and numerical simulation results show both the feasibility and high performance of this newly-built control strategy. Furthermore, the relationship between the values of the parameters and the performance of this controller is not only illustrated numerically but also analyzed theoretically.
منابع مشابه
Nonlinear Power-Level Control of the MHTGR Only with the Feedback Loop of Helium Temperature
Power-level control is a crucial technique for the safe, stable and efficient operation of modular high temperature gas-cooled nuclear reactors (MHTGRs), which have strong inherent safety features and high outlet temperatures. The current power-level controllers of the MHTGRs need measurements of both the nuclear power and the helium temperature, which cannot provide satisfactory control perfor...
متن کاملFACTS Control Parameters Identification for Enhancement of Power System Stability
The aim of this paper is to investigate a novel approach for output feedback damping controller design ofSTATCOM in order to enhance the damping of power system low frequency oscillations (LFO). The design ofoutput feedback controller is considered as an optimization problem according with the time domain-basedobjective function which is solved by a honey bee mating optimization algorithm (HBMO...
متن کاملA New Robust Control Design Based on Feedback Compensator for Sssc
In this paper, the modified linearized Phillips-Heffron model is utilized to theoretically analyze asingle-machine infinite-bus (SMIB) installed with SSSC. Then, the results of this analysis are used forassessing the potential of an SSSC supplementary controller to improve the dynamic stability of apower system. This is carried out by measuring the electromechanical controllability through sing...
متن کاملEigenvalue Assignment Of Discrete-Time Linear Systems With State And Input Time-Delays
Time-delays are important components of many dynamical systems that describe coupling or interconnection between dynamics, propagation or transport phenomena, and heredity and competition in population dynamics. The stabilization with time delay in observation or control represents difficult mathematical challenges in the control of distributed parameter systems. It is well-known that the stabi...
متن کاملSaturated Adaptive Output-Feedback Power-Level Control for Modular High Temperature Gas-Cooled Reactors
Small modular reactors (SMRs) are those nuclear fission reactors with electrical output powers of less than 300 MWe. Due to its inherent safety features, the modular high temperature gas-cooled reactor (MHTGR) has been seen as one of the best candidates for building SMR-based nuclear plants with high safety-level and economical competitive power. Power-level control is crucial in providing grid...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012